Characterization of Werner syndrome protein DNA helicase activity: directionality, substrate dependence and stimulation by replication protein A.
نویسندگان
چکیده
Werner syndrome is an inherited disease characterized by premature aging, genetic instability and a high incidence of cancer. The wild type Werner syndrome protein (WRN) has been demonstrated to exhibit DNA helicase activity in vitro. Here we report further biochemical characterization of the WRN helicase. The enzyme unwinds double-stranded DNA, translocating 3'-->5' on the enzyme-bound strand. Hydrolysis of dATP or ATP, and to a lesser extent hydrolysis of dCTP or CTP, supports WRN-catalyzed strand-displacement. K m values for ATP and dATP are 51 and 119 microM, respectively, and 2.1 and 3.9 mM for CTP and dCTP, respectively. Strand-displacement activity of WRN is stimulated by single-stranded DNA-binding proteins (SSBs). Among the SSBs from Escherichia coli, bacteriophage T4 and human, stimulation by human SSB (human replication protein A, hRPA) is the most extensive and occurs with a stoichiometry which suggests direct interaction with WRN. A deficit in the interaction of WRN with hRPA may be associated with deletion mutations that occur at elevated frequency in Werner syndrome cells.
منابع مشابه
p53 modulates RPA-dependent and RPA-independent WRN helicase activity.
Werner syndrome is a hereditary disorder characterized by the early onset of age-related symptoms, including cancer. The absence of a p53-WRN helicase interaction may disrupt the signal to direct S-phase cells into apoptosis for programmed cell death and contribute to the pronounced genomic instability and cancer predisposition in Werner syndrome cells. Results from coimmunoprecipitation studie...
متن کاملMechanism and substrate specificity of telomeric protein POT1 stimulation of the Werner syndrome helicase
Loss of the RecQ helicase WRN protein causes the cancer-prone progeroid disorder Werner syndrome (WS). WS cells exhibit defects in DNA replication and telomere preservation. The telomeric single-stranded binding protein POT1 stimulates WRN helicase to unwind longer telomeric duplexes that are otherwise poorly unwound. We reasoned that stimulation might occur by POT1 recruiting and retaining WRN...
متن کاملMolecular Cooperation between the Werner Syndrome Protein and Replication Protein A in Relation to Replication Fork Blockage*
The premature aging and cancer-prone disease Werner syndrome is caused by loss of function of the RecQ helicase family member Werner syndrome protein (WRN). At the cellular level, loss of WRN results in replication abnormalities and chromosomal aberrations, indicating that WRN plays a role in maintenance of genome stability. Consistent with this notion, WRN possesses annealing, exonuclease, and...
متن کاملHelicase Activity p53 Modulates RPA-Dependent and RPA-Independent WRN
Werner syndrome is a hereditary disorder characterized by the early onset of age-related symptoms, including cancer. The absence of a p53-WRN helicase interaction may disrupt the signal to direct S-phase cells into apoptosis for programmed cell death and contribute to the pronounced genomic instability and cancer predisposition in Werner syndrome cells. Results from coimmunoprecipitation studie...
متن کاملEvidence for a Replication Function of Ffa-1, the Xenopus Orthologue of Werner Syndrome Protein
DNA replication in higher eukaryotic cells occurs at a large number of discrete sites called replication foci. We have previously purified a protein, focus-forming activity 1 (FFA-1), which is involved in the assembly of putative prereplication foci in Xenopus egg extracts. FFA-1 is the orthologue of the Werner syndrome gene product (WRN), a member of the RecQ helicase family. In this paper we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 26 12 شماره
صفحات -
تاریخ انتشار 1998